Making an overview presentation of the scaling relations

The following video-presentation – for the CHEAC Summer school 2025 – retells our review on the scaling relations electrocatalysis https://chemrxiv.org/engage/chemrxiv/article-details/67ed469081d2151a02b33a98

The final video

From the beginning I decided to try AI to prepare the presentation. Eventually the only to record the video turned out to be by the traditional way. Together with co-authors Ritums and Nadezda, we used PowerPoint with its slide-by-slide recording feature. As we were in 3 different locations, we exchanged the presentation several time while recording. I used chatgpt 4o and 5 to write lecturer’s notes for every slide. In particular, I gave the chat our article’s pdf-file and then discussed every slide-text using canvas-feature to polish it iteratively. Nadezda also used chatgpt to refined her slides before reading them aloud. Overall, I have spend over two weeks planning the presentation. Then a week polishing the slides. Then several days to record and re-record slides. And finally I have got this the final video-presentation.

Adding voice to a ready presentation

app.pictory.ai does a relatively good job on reading the lecturer’s notes in a ready presentation. Thought, it reads “Jan” and “OOH” in a funny way. And it adds a lot of 10–20 second pauses. Also the slide numbering is off as well as all animation. The picture is also cut from below. But overall, it takes around 2 hours to generate this voiced video and process it.

Use NotebookLM to make a podcast

In the prompt I have specified to avoid banned tells, see https://doublelayer.eu/vilab/2024/12/17/list-of-banned-tells-for-gpt/ Well, I have forbidden to use “pivotal”, but AI still uses “pivotal”.

I am not responsible for the result 🙂 I have heard it and it sounds OK-ish.

Using Gemini in Google Slides

Does not work for me. Gemini wants to draw images. I just want to enter my own figures.

All I need is to convert Figures to Slides

https://www.magicslides.app promises to do exactly that but I failed with a notice that below 5 Mb files are allowed.

SlideAI extension also does not do what I want.

Ufff … manual upload is still the fastest and most robust. Well, it is not so simple, as most of my figures are in pdf, so I wrote this script to convert everything to png. When it took me 2 mins to drag-and-drop all png figure to my presentation. Hurray!

#!/bin/bash

# Create output folder
mkdir -p png

# List of input files
files=(
"Figure 1 mechanisms.png"
"Figure 18 Timeline.png"
"FIgure 14 distances.pdf"
"Figure 11 relative.pdf"
"Figure 6 3dvolcano_withscaling.pdf"
"Figure 2 publications.pdf"
"Figure 5 3dvolcano.pdf"
"Figure 17 perspectives.pdf"
"Figure 16 O_bypassing.pdf"
"Figure 15 O_pushing.pdf"
"Figure 12 O_breaking.pdf"
"Figure 13 O_switching.png"
"Figure 10 O_tuning.pdf"
"Figure 7 projection_potential.pdf"
"Figure 9 projection_ads.pdf"
"Figure 8 timeline.pdf"
"Figure 3 ass_diss.png"
"Figure 4 scalings.png"
)

# Loop through files
for f in "${files[@]}"; do
  base=$(basename "$f")
  name="${base%.*}"
  ext="${base##*.}"
  
  if [[ "$ext" == "pdf" ]]; then
    convert -density 300 "$f" -quality 100 "png/${name}.png"
  elif [[ "$ext" == "png" ]]; then
    cp "$f" "png/${name}.png"
  else
    echo "Unsupported file type: $f"
  fi
done

Use NotebookLM to create FAQ

Pretty cool – NotebookLM make a FAQ.

What are scaling relations in electrocatalysis, and why are they important?

Scaling relations are correlations between the adsorption energies of reaction intermediates on a catalyst’s surface. They are crucial in multi-step electrocatalytic reactions, such as the oxygen reduction reaction (ORR), carbon dioxide reduction (CO2R), and nitrogen reduction (N2RR). The concept emerged in 2005 with the discovery of linear relations between adsorption energies of intermediates like OH, OOH, and O on metal surfaces. Understanding these relations is vital because they define fundamental chemical limitations in electrocatalytic reactions, impacting the design of more efficient catalysts for energy conversion technologies like electrolysers, fuel cells, and metal-air batteries.

How do scaling relations limit the efficiency of oxygen electrocatalysis?

In oxygen electrocatalysis, particularly the oxygen reduction reaction (ORR), the adsorption energies of key intermediates (OOH, OH, O) are correlated by scaling relations. These correlations constrain the achievable catalytic activity, often visualised on “volcano plots.” The OOH-OH and O-OH scaling relations, for instance, mean that if a catalyst binds one intermediate optimally, it might bind another too strongly or too weakly, preventing it from reaching the ideal catalytic activity (the “volcano top”). This limitation is significant, as experimental results have shown catalytic overpotentials converging to a limit set by these relations for over two decades, hindering progress in sustainable energy solutions.

What are the main reaction mechanisms in oxygen electrocatalysis, and how does catalyst geometry influence them?

Oxygen electrocatalysis primarily proceeds via two mechanisms: associative and dissociative. The associative mechanism, which dominates most known catalysts, involves intermediates like OOH, OH, and O adsorbing at a single active site. Geometrically, this requires only one atom in the active site. The dissociative mechanism, conversely, requires at least two neighbouring atoms to accommodate dissociation products (O and OH). On metal surfaces, a spatial mismatch often prevents the dissociative mechanism, as O preferentially adsorbs on hollow sites and OH on top sites. However, dual-atom site catalysts (DACs) can facilitate dissociative pathways by providing two adjacent sites, allowing for the adsorption of dissociation products. The inter-atomic distance within these active sites is a critical geometric parameter that influences the energy barrier for dissociation, balancing thermodynamics and kinetics.

What is the “volcano plot” in electrocatalysis, and how do scaling relations affect it?

The “volcano plot” is a theoretical framework used to understand electrocatalysis, typically representing overpotential or activity as an “altitude” against adsorption energy descriptors. For ORR, it correlates adsorption energies with deviations from the thermodynamic equilibrium potential. Scaling relations define the “paths” or “fixed climbing routes” on this volcano plot that are accessible to catalysts. For example, the OOH-OH scaling relation appears as a plane on the three-dimensional volcano, and catalysts following this relation are confined to a specific line on the volcano’s surface. This means that while an “ideal catalyst” (the volcano’s apex) might exist theoretically, scaling relations prevent most catalysts from reaching it, limiting the search for optimal catalysts to a two-dimensional projection.

What are the five general strategies for “manipulating” scaling relations in electrocatalysis?

The review outlines five general strategies for manipulating scaling relations to enhance electrocatalytic performance:

  1. Tuning: Adjusting the adsorption energy of a key intermediate (e.g., ∆GOH) to optimise catalyst performance within the constraints of an existing scaling relation, adhering to the Sabatier principle.
  2. Breaking: Decreasing the intercept (β) of a scaling relation by selectively stabilising one intermediate over another (e.g., OOH relative to OH), often by introducing spectator groups that induce stabilising interactions.
  3. Switching: Changing the slope (α) of a scaling relation by enabling an alternative reaction mechanism (e.g., switching from an associative to a dissociative mechanism in ORR) to avoid problematic intermediates. This usually requires dual active sites.
  4. Pushing: A combined strategy that changes the slope and adjusts the intercept, simultaneously switching to an alternative mechanism and using stabilising interactions (similar to breaking).
  5. Bypassing: Completely decoupling adsorption energies by switching between two distinct states of the catalyst (e.g., geometric or electronic) during the reaction cycle, with each state having optimal adsorption energies for specific intermediates. This strategy aims to eliminate all scaling relation constraints.

How does the “breaking” strategy specifically aim to overcome the OOH-OH scaling relation?

The “breaking” strategy focuses on reducing the intercept of the OOH-OH scaling relation (from approximately 3.2 eV to an ideal value of 2.46 eV) by selectively stabilising the OOH intermediate relative to OH. This typically involves introducing spectator groups or a second adsorption site near the active site. These spectators can form hydrogen bonds or other stabilising interactions with OOH, effectively shifting its adsorption energy without proportionally affecting OH. While challenging to achieve experimentally, this strategy has been demonstrated in oxygen evolution reactions (OER) and more recently in ORR using dual-atom catalysts (DACs) with specific active sites like PN3FeN3, where the phosphorus acts as a spectator to stabilise OOH through hydrogen bonding.

What role do Single-Atom Site Catalysts (SACs) and Dual-Atom Site Catalysts (DACs) play in manipulating scaling relations?

Single-Atom Site Catalysts (SACs) and Dual-Atom Site Catalysts (DACs) are crucial in manipulating scaling relations due to their distinct geometric and electronic properties. SACs typically allow for “on-top” adsorption, primarily favouring the associative mechanism in ORR. DACs, with their two neighbouring active sites, offer the possibility of accommodating two dissociation products simultaneously, thereby enabling the dissociative mechanism. This ability to switch mechanisms is key to the “switching” strategy, where DACs can replace the OOH intermediate with two distinct O and OH intermediates adsorbed at separate sites. Furthermore, the precise control over inter-atomic distances and curvature in DACs allows for fine-tuning of electronic structures and promoting specific interactions (like hydrogen bonding), contributing to “breaking” and “pushing” strategies.

What is the ultimate goal of manipulating scaling relations, and how does the “bypassing” strategy contribute to this vision?

The ultimate goal of manipulating scaling relations is to achieve ideal catalyst performance, ideally with zero overpotential, by overcoming the fundamental limitations imposed by these correlations. The “bypassing” strategy represents the most ambitious approach towards this goal. It seeks to completely decouple the adsorption energies of reaction intermediates by allowing the catalyst to switch between two or more distinct states (e.g., geometric, electronic, or photonic) during the reaction cycle. Each state would be optimally configured to bind specific intermediates at the ideal energy values required for efficient catalysis. While seemingly challenging in practice, this concept, inspired by natural enzymes like cytochrome c oxidase, offers a theoretical pathway to eliminate all scaling constraints and achieve the theoretical apex of the volcano plot, pushing the boundaries of what is currently achievable in electrocatalysis.

Visiting Tartu in November

A list of things to bring with you:

  • Gloves, hat and scarf (the average temperature is −1.5°C)
  • Waterproof boots or trekking boots (with a good grip in case there is ice)
  • Layered clothing (like pullovers and cardigans, so that you can remove or add layers according to the weather and how fast you are moving)
  • Swimming equipment (for SPA and sauna or why not doing some winter swimming?)
  • Napkins for a runny nose
  • A postcard to pin in the office 5072 where Vladislav works

The second visit of Iuliia

By Iuliia:

“””

I have been collaborating with the Electrical Double Layer group from the University of Tartu since the beginning of 2016. I had been to Tartu once, in March’2016, and this August I have visited the group again. During this visit, I was accompanied by Dr. Marco Preto, Researcher in Novelmar Project from Interdisciplinary Centre of Marine and Environmental Research of the University of Porto.
The host institution received us very warmly. There was no need to settle any bureaucracy procedures – Estonian efficiency does not cease to amaze me. Everything was taken care of in advance, and we immediately got out a working spaces, keys or anything we could need for work. I think such attitude is very important for these short visits.
In Estonia we spent two wonderful weeks with work and leisure interconnected. Most of the time in Tartu we worked closely with Dr. Vladislav Ivaništšev and his team, where very productive work was carried out, with social activity interludes that recharged us with a relaxed exchange of ideas. During this visit, the work on developing of an approach to an analysis of electrical double layer in ionic liquids systems was conducted, and an article on our previously done work was prepared for submission.
Among all the Master and PhD students, that are being trained at the group, Meeri Lembinen must be acknowledged especially. Meeri, besides being a brilliant student, is a perfect manager. I suspect, due to her care and attention we have not got a single problem at the university and during the whole stay were accompanied by her and felt like at home.
I hope, our fruitful collaboration is to be continued!

“””

Iuliia (left), Meeri (right)

Sergey Sosnin’s visit to Tartu

I was in a three-days academic trip in December 2016 within a collaboration between Skoltech research group of Prof. Maxim Fedorov and Tartu theoretical electrochemistry group. My primary goal was to study 3D-RISM method for calculation of the solvatation of molecules and applying this method in my QSAR researches. During my visit I’ve worked closely with Maksim Mišin. He has trained me the 3D-RISM methodology, workflow, and theoretical background. After that we have done a small project related with application of RISM in deep learning for chemoinformatics tasks. I was inspired by good theoretical and practical skills of researchers in the theoretical electrochemistry group. We discussed a lot about current science challenges, and I hope that mutual exchange of ideas was helpful for both.

Because it was my first visit to Tartu I had have intended to familiarize myself with this town. Maksim Mišin and Dr. Vladislav Ivaništšev have represented me this city and have told me a lot of interesting things about Estonia. I was really enjoyed in this trip, and I hope that I will visit it again.

Sergey Sosnin

Soaked to the skin: tuning ionic liquids for electrochemical devices

A post in JPhys+ about our recent article: Researchers at the Universities of Santiago de Compostela, A Coruña, Tartu, Stratchclyde and Cambridge, shed light on the structure of the electrified interface in mixtures of contaminated ionic liquids in their recently published JPCM letter.

https://jphysplus.iop.org/2016/10/28/soaked-to-the-skin-tuning-ionic-liquids-for-electrochemical-devices/

The article is published here: http://iopscience.iop.org/article/10.1088/0953-8984/28/46/464001

P.S. This publication became possible thanks to the COST CM1206.

P.P.S. Finally they have corrected the authors names!

 

STSM to Trieste: Simulation of surface charge effect on the sliding friction of a nanoconfined ionic liquid

The interest towards using ionic liquids as lubricants has been increasing since ca. 2012 [1]. It was demonstrated that the interfacial structures in ionic liquids control the nanoscale friction. Experimental (see refs in [1]) and several computational studies [2–5] revealed that lubricity varies with the number and lateral structure of confined ion layers, which in turn are dependent on the applied potential. This opens a possibility of electrochemical control of friction, in other words a “Tantalizing prospect of tunning friction on small dimensions without changing surfaces with a self-replenish­ing layer, and could be easily integrated into niche situations, … because ionic liquids are cheaper than existing nonconducting molecular lubricants” (see refs in [1]). At the same time it was shown that the restructuring of the potential dependent interfacial structure happens in ionic liquids on a regular manner [6,7]. Therefore, there is a direct relation between various interfacial properties through the potential dependent interfacial structure [8]. For instance, it has not been marked in the literature that the potential dependent friction force [9–11] is proportional to the potential dependent capacitance [12–14]. The understanding of this structure-based relationship can help in controlling of the nanoscale friction in ionic liquids by a potential-tuned ionic lubricant layer.

During this STSM visit, we have initiated a comprehensive study: formulated a hypothesis, prepared a research plan, and obtained preliminary results. The later reveal a proportionality between potential dependent capacitance and friction force. Such structure-based relationship can be of use in controlling of the nanoscale friction in ionic liquids by an applied potential. Further work should verify the generic mechanism of the electrotunable lubricity and capacity. In the future study we plan to perform a detailed atomistic simulation to enable comparison between specific computational and experimental data.

This research was supported by a short term scientific mission funded by COST action MP1303.

References:

[1] R. Hayes, G.G. Warr, R. Atkin, Structure and Nanostructure in Ionic Liquids, Chem. Rev. 115 (2015) 6357–6426.

[2] R. Capozza, A. Vanossi, A. Benassi, E. Tosatti, Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging, J. Chem. Phys. 142 (2015) 64707.

[3] R. Capozza, A. Benassi, A. Vanossi, E. Tosatti, Electrical charging effects on the sliding friction of a model nano-confined ionic liquid, The Journal of Chemical Physics. 143 (2015) 144703.

[4] O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, Electrotunable Lubricity with Ionic Liquid Nanoscale Films, Sci. Rep. 5 (2015) 7698.

[5] O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions?, The Journal of Physical Chemistry Letters. 6 (2015) 3998–4004.

[6] V. Ivaništšev, K. Kirchner, T. Kirchner, M.V. Fedorov, Restructuring of the electrical double layer in ionic liquids upon charging, J. Phys.: Condens. Matter. 27 (2015) 102101.

[7] V. Ivaništšev, S. O’Connor, M.V. Fedorov, Poly(a)morphic portrait of the electrical double layer in ionic liquids, Electrochem. Commun. 48 (2014) 61–64.

[8] M.V. Fedorov, A.A. Kornyshev, Ionic liquids at electrified interfaces, Chem. Rev. 114 (2014) 2978–3036.

[9] J. Sweeney, F. Hausen, R. Hayes, G.B. Webber, F. Endres, M.W. Rutland, R. Bennewitz, R. Atkin, Control of Nanoscale Friction on Gold in an Ionic Liquid by a Potential-Dependent Ionic Lubricant Layer, Phys. Rev. Lett. 109 (2012) 155502.

[10] H. Li, R.J. Wood, M.W. Rutland, R. Atkin, An ionic liquid lubricant enables su­perlubricity to be “switched on” in situ using an electrical potential, Chem. Com­mun. 50 (2014) 4368–4370.

[11] H. Li, M.W. Rutland, R. Atkin, Ionic Liquid Lubrication: Influence of Ion Structure, Surface Potential and Sliding Velocity, Phys. Chem. Chem. Phys. 15 (2013) 14616–14623.

[12] M. Drüschler, N. Borisenko, J. Wallauer, C. Winter, B. Huber, F. Endres, B. Roling, New insights into the interface between a single-crystalline metal elec­trode and an extremely pure ionic liquid: slow interfacial processes and the influ­ence of temperature on interfacial dynamics, Phys. Chem. Chem. Phys. 14 (2012) 5090–5099.

[13] R. Atkin, N. Borisenko, M. Drüschler, S.Z. El Abedin, F. Endres, R. Hayes, B. Huber, B. Roling, An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophos­phate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction, Phys. Chem. Chem. Phys. 13 (2011) 6849.

[14] R. Costa, C.M. Pereira, A.F. Silva, Charge Storage on Ionic Liquid Electric Double Layer: The Role of the Electrode Material, Electrochim. Acta. 167 (2015) 421–428.

STSM to Vienna: MD simulations of ionic liquid mixtures with polarizable force fi elds

Generic force fields are widely used in molecular level computations. However, in real physical systems, the magnitude and localization of the charges are variable due to the interatomic polarization and the molecular dynamics. There are two ways to take these into account: (i) to reduce the atomic charges to non-integer values or (ii) to include polarizableforces.

In this STSM the latter method was used adding Drude oscillators to the system to add the polarizability to the particles. The polarizable force fields (FFs) developed by the group of Prof. Schroder where used to simulate the mixtures of ionic liquids with classical molecular dynamics. Namely mixture of [EMIm][BF4] and [EMIm]I was used. For comparison, the same system with non-polarizable FFs and the system of pure [EMIm][BF4] using polarizable FFs were simulated.

The main problem with classical MD simulations of ions is that the viscosity is overestimated which comes from the fact of imprecise non-bonding interactions. The polarizable FFs estimate it better and taken from the simulations the diffusion constant for the same system with polarizable FFs was much higher than for non-polarizable (1.03 A2/ns and 0.48 A2/ns respectively for cations). The system of pure [EMIm][BF4] showed that iodine affects the movement of ions as the diffusion constant differs by 10% (1.15 A2/ns for cations in pure system). All in all, the polarizable FFs improves the system and adding the small amount of iodine does not change the diffusion nor the structure that much.

Travel tips

Summer is a great time for research visits, schools as well as vacations. Here is my check list for a safe trip from 2016.

  • Passport, ID card and driving license (and a secure place for these documents)
  • A bottle of water (stay hydrated)
  • Snacks or meal replacement bars for sustenance during the trip
  • Cough drops
  • Wet wipes and napkins
  • Something to read or listen (headphones)
  • A notebook or something to write on
  • A scarf or something to protect your neck from cold
  • A cap or something to close your face while sleeping
  • Sunglasses
  • Compression socks
  • Lightweight and water-resistant pair of shoes
  • Some coins and some cash
  • A universal adapter

Here is what I would like to add to the list in 2023 (thanks to chatGPT for ideas):

  • A portable charger or power bank to keep your devices charged
  • Hand sanitizer or disinfecting wipes to keep your hands and surfaces clean
  • An extra set of clothes or a change of underwear in case of unexpected delays or lost luggage
  • Maps or a guidebook for your destination to help you navigate and plan your trip
  • A medical mask!