A letter from an editor

Dear Dr. Ivaništšev,

Thank you again for your contribution to the following Special Issue, which has been published in our open access journal Computation (ISSN 2079-3197).

“50th Anniversary of the Kohn-Sham Theory—Advances in Density Functional Theory”
Guest edited by Prof. Dr. Karlheinz Schwarz and Prof. Dr. Agnes Nagy

All articles can be accessed freely online. For your convenience, we attach below a consolidated table of contents. If you think it appropriate, we invite you to share this message further with your peers.

Table of contents

Darghouth, A.A.M.H.M.; Casida, M.E.; Taouali, W.; Alimi, K.; Ljungberg, M.P.; Koval, P.; Sánchez-Portal, D.; Foerster, D. Assessment of Density-Functional Tight-Binding Ionization Potentials and Electron Affinities of Molecules of Interest for Organic Solar Cells Against First-Principles GW Calculations. Computation 2015, 3, 616-656; doi:10.3390/computation3040616. http://www.mdpi.com/2079-3197/3/4/616

Tao, S.X.; Theulings, A.M.M.G.; Prodanović, V.; Smedley, J.; van der Graaf, H. Optical Properties of Silicon-Rich Silicon Nitride (SixNyHz) from First Principles. Computation 2015, 3, 657-669; doi:10.3390/computation3040657. http://www.mdpi.com/2079-3197/3/4/657

Amovilli, C.; Floris, F.M.; Grisafi, A. Localized Polycentric Orbital Basis Set for Quantum Monte Carlo Calculations Derived from the Decomposition of Kohn-Sham Optimized Orbitals. Computation 2016, 4, 10; doi:10.3390/computation4010010. http://www.mdpi.com/2079-3197/4/1/10

Tkachuk, O.I.; Terebinskaya, M.I.; Lobanov, V.V.; Arbuznikov, A.V. Influence of the Localization of Ge Atoms within the Si(001)(4 × 2) Surface Layer on Semicore One-Electron States. Computation 2016, 4, 14; doi:10.3390/computation4010014. http://www.mdpi.com/2079-3197/4/1/14

Dharma-wardana, M.W.C. Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter †. Computation 2016, 4, 16; doi:10.3390/computation4020016. http://www.mdpi.com/2079-3197/4/2/16

Constantin, L.A.; Fabiano, E.; Della Sala, F. Kinetic and Exchange Energy Densities near the Nucleus. Computation 2016, 4, 19; doi:10.3390/computation4020019. http://www.mdpi.com/2079-3197/4/2/19

Civalleri, B.; Dovesi, R.; Pernot, P.; Presti, D.; Savin, A. On the Use of Benchmarks for Multiple Properties. Computation 2016, 4, 20, 20; doi:10.3390/computation4020020. http://www.mdpi.com/2079-3197/4/2/20

Däne, M.; Gonis, A. On the v-Representabilty Problem in Density Functional Theory: Application to Non-Interacting Systems. Computation 2016, 4, 24; doi:10.3390/computation4030024. http://www.mdpi.com/2079-3197/4/3/24

Tsuneda, T.; Maeda, S.; Harabuchi, Y.; Singh, R.K. Orbital Energy-Based Reaction Analysis of SN2 Reactions. Computation 2016, 4, 23; doi:10.3390/computation4030023. http://www.mdpi.com/2079-3197/4/3/23

Karu, K.; Ruzanov, A.; Ers, H.; Ivaništšev, V.; Lage-Estebanez, I.; García de la Vega, J.M. Predictions of Physicochemical Properties of Ionic Liquids with DFT. Computation 2016, 4, 25; doi:10.3390/computation4030025. http://www.mdpi.com/2079-3197/4/3/25

Juarez, F.; Soldano, G.; Santos, E.; Guesmi, H.; Tielens, F.; Mineva, T. Interaction of Hydrogen with Au Modified by Pd and Rh in View of Electrochemical Applications. Computation 2016, 4, 26; doi:10.3390/computation4030026. http://www.mdpi.com/2079-3197/4/3/26

Glushkov, V.; Levy, M. Highly Excited States from a Time Independent Density Functional Method. Computation 2016, 4, 28; doi:10.3390/computation4030028. http://www.mdpi.com/2079-3197/4/3/28

Sahni, V.; Pan, X.-Y.; Yang, T. Electron Correlations in Local Effective Potential Theory. Computation 2016, 4, 30; doi:10.3390/computation4030030. http://www.mdpi.com/2079-3197/4/3/30

Schmidt, T.; Kümmel, S. The Influence of One-Electron Self-Interaction on d-Electrons. Computation 2016, 4, 33; doi:10.3390/computation4030033. http://www.mdpi.com/2079-3197/4/3/33

Acharya, S.R.; Turkowski, V.; Rahman, T.S. Towards TDDFT for Strongly Correlated Materials. Computation2016, 4, 34; doi:10.3390/computation4030034. http://www.mdpi.com/2079-3197/4/3/34

Schwarz, K.; Sham, L.J.; Mattsson, A.E.; Scheffler, M. Obituary for Walter Kohn (1923–2016). Computation2016, 4, 40; doi:10.3390/computation4040040. http://www.mdpi.com/2079-3197/4/4/40

Nagy, Á.; Schwarz, K. Special Issue “50th Anniversary of the Kohn–Sham Theory—Advances in Density Functional Theory”. Computation 2016, 4, 45; doi:10.3390/computation4040045. http://www.mdpi.com/2079-3197/4/4/45

Best regards,
Ms. Lei Chen
Assistant Editor

Computation (ISSN 2079-3197; http://www.mdpi.com/journal/computation) is a journal published by MDPI AG, Basel, Switzerland. Computation maintains rigorous peer-review and a rapid publication process. All articles are published with a CC BY 4.0 license. For more information on the CC BY license, please see: http://creativecommons.org

Soaked to the skin: tuning ionic liquids for electrochemical devices

A post in JPhys+ about our recent article: Researchers at the Universities of Santiago de Compostela, A Coruña, Tartu, Stratchclyde and Cambridge, shed light on the structure of the electrified interface in mixtures of contaminated ionic liquids in their recently published JPCM letter.

Soaked to the skin: tuning ionic liquids for electrochemical devices

The article is published here: http://iopscience.iop.org/article/10.1088/0953-8984/28/46/464001

P.S. This publication became possible thanks to the COST CM1206.

P.P.S. Finally they have corrected the authors names!


Comp. perspective on the supercaps

In the recent years, a significant progress has been achieved in the modeling of realistic porous carbon electrodes [J. C. Palmer and K. E. Gubbins, Micropor. Mesopor. Mat., 154, 24–37 (2012).], simulations under constant potential conditions [D. T. Limmer et al., Phys. Rev. Lett., 111, 106102 (2013).], description of the electrode material electronic structure [E. Paek, A. J. Pak, and G. S. Hwang, J. Electrochem. Soc., 160, A1–A10 (2013).], and ion packing relation to the capacitance [S. Kondrat, C. R. Pérez, V. Presser, Y. Gogotsi, and A. A. Kornyshev, Energy Environ. Sci., 5, 6474–6479 (2012).]. Let us turn the readers’ attention to two aspects of the theoretical predicted relation between the ion size and the pore size, suggesting higher capacitance values for certain pore sizes. First, the molecular dynamics and density functional theory simulations do confirm the theory in case of slit-pore models with rigorously defined width [D. Jiang and J. Wu, J. Phys. Chem. Lett., 4, 1260–1267 (2013).] & [G. Feng, S. Li, V. Presser, and P. T. Cummings, J. Phys. Chem. Lett., 4, 3367–3376 (2013).]. Therefore, the theory suggests that some electrode materials with a certain pore distribution the capacitance is higher due to specific ion packing. Yet, as has been elegantly pointed by Cummings and co-workers [G. Feng, S. Li, V. Presser, and P. T. Cummings, J. Phys. Chem. Lett., 4, 3367–3376 (2013).], due to a wide distribution of pore sizes in the real electrode material this effect might not at all affect the experimentally measured capacitance. Second, as noted above, the capacitance is greatly determined by the electronic structure of the electrode material. The state-of-the-art molecular dynamics studies do not yet include the electronic structure into account [M. V. Fedorov and A. A. Kornyshev, Chem. Rev., 114, 2978–3036 (2014).]. The situation is about to change in the future, for example with the help of ab initio molecular dynamics [M. Salanne, Phys. Chem. Chem. Phys., 17, 14270–14279 (2015).].

Note, the following text appeared in the artile: E. Tee, I. Tallo, T. Thomberg, A. Jänes, E. Lust, J. Electrochem. Soc. 163 (2016) A1317–A1325. See at http://jes.ecsdl.org/content/163/7/A1317.abstract (DOI: 10.1149/2.0931607jes)